go openai
该库为OpenAI API提供了非正式的GO客户。我们支持:
- Chatgpt 4o,O1
- GPT-3,GPT-4
- dall·e 2,dall·e 3,gpt图像1
- 耳语
安装
go get github.com/sashabaranov/go-openai
当前,Go-Openai需要GO版本1.18或更高版本。
用法
chatgpt示例用法:
package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
client := openai . NewClient ( "your token" )
resp , err := client . CreateChatCompletion (
context . Background (),
openai. ChatCompletionRequest {
Model : openai . GPT3Dot5Turbo ,
Messages : []openai. ChatCompletionMessage {
{
Role : openai . ChatMessageRoleUser ,
Content : "Hello!" ,
},
},
},
)
if err != nil {
fmt . Printf ( "ChatCompletion error: %v n " , err )
return
}
fmt . Println ( resp . Choices [ 0 ]. Message . Content )
}获取OpenAI API密钥:
- 访问OpenAI网站https://platform.ope**n*ai.com/account/api-keys。
- 如果您没有帐户,请单击“注册”以创建一个。如果这样做,请单击“登录”。
- 登录后,请导航到您的API密钥管理页面。
- 单击“创建新的秘密密钥”。
- 输入新密钥的名称,然后单击“创建秘密键”。
- 将显示您的新API键。使用此键与OpenAI API进行交互。
注意:您的API密钥是敏感信息。不要与任何人分享。
其他示例:
CHATGPT流媒体完成
package main
import (
"context"
"errors"
"fmt"
"io"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. ChatCompletionRequest {
Model : openai . GPT3Dot5Turbo ,
MaxTokens : 20 ,
Messages : []openai. ChatCompletionMessage {
{
Role : openai . ChatMessageRoleUser ,
Content : "Lorem ipsum" ,
},
},
Stream : true ,
}
stream , err := c . CreateChatCompletionStream ( ctx , req )
if err != nil {
fmt . Printf ( "ChatCompletionStream error: %v n " , err )
return
}
defer stream . Close ()
fmt . Printf ( "Stream response: " )
for {
response , err := stream . Recv ()
if errors . Is ( err , io . EOF ) {
fmt . Println ( " n Stream finished" )
return
}
if err != nil {
fmt . Printf ( " n Stream error: %v n " , err )
return
}
fmt . Printf ( response . Choices [ 0 ]. Delta . Content )
}
}GPT-3完成
package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. CompletionRequest {
Model : openai . GPT3Babbage002 ,
MaxTokens : 5 ,
Prompt : "Lorem ipsum" ,
}
resp , err := c . CreateCompletion ( ctx , req )
if err != nil {
fmt . Printf ( "Completion error: %v n " , err )
return
}
fmt . Println ( resp . Choices [ 0 ]. Text )
}GPT-3流媒体完成
package main
import (
"errors"
"context"
"fmt"
"io"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. CompletionRequest {
Model : openai . GPT3Babbage002 ,
MaxTokens : 5 ,
Prompt : "Lorem ipsum" ,
Stream : true ,
}
stream , err := c . CreateCompletionStream ( ctx , req )
if err != nil {
fmt . Printf ( "CompletionStream error: %v n " , err )
return
}
defer stream . Close ()
for {
response , err := stream . Recv ()
if errors . Is ( err , io . EOF ) {
fmt . Println ( "Stream finished" )
return
}
if err != nil {
fmt . Printf ( "Stream error: %v n " , err )
return
}
fmt . Printf ( "Stream response: %v n " , response )
}
}音频语音到文本
package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. AudioRequest {
Model : openai . Whisper1 ,
FilePath : "recording.mp3" ,
}
resp , err := c . CreateTranscription ( ctx , req )
if err != nil {
fmt . Printf ( "Transcription error: %v n " , err )
return
}
fmt . Println ( resp . Text )
}音频字幕
package main
import (
"context"
"fmt"
"os"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( os . Getenv ( "OPENAI_KEY" ))
req := openai. AudioRequest {
Model : openai . Whisper1 ,
FilePath : os . Args [ 1 ],
Format : openai . AudioResponseFormatSRT ,
}
resp , err := c . CreateTranscription ( context . Background (), req )
if err != nil {
fmt . Printf ( "Transcription error: %v n " , err )
return
}
f , err := os . Create ( os . Args [ 1 ] + ".srt" )
if err != nil {
fmt . Printf ( "Could not open file: %v n " , err )
return
}
defer f . Close ()
if _ , err := f . WriteString ( resp . Text ); err != nil {
fmt . Printf ( "Error writing to file: %v n " , err )
return
}
}dall-e 2图像生成
package main
import (
"bytes"
"context"
"encoding/base64"
"fmt"
openai "github.com/sashabaranov/go-openai"
"image/png"
"os"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
// Sample image by link
reqUrl := openai. ImageRequest {
Prompt : "Parrot on a skateboard performs a trick, cartoon style, natural light, high detail" ,
Size : openai . CreateImageSize256x256 ,
ResponseFormat : openai . CreateImageResponseFormatURL ,
N : 1 ,
}
respUrl , err := c . CreateImage ( ctx , reqUrl )
if err != nil {
fmt . Printf ( "Image creation error: %v n " , err )
return
}
fmt . Println ( respUrl . Data [ 0 ]. URL )
// Example image as base64
reqBase64 := openai. ImageRequest {
Prompt : "Portrait of a humanoid parrot in a classic costume, high detail, realistic light, unreal engine" ,
Size : openai . CreateImageSize256x256 ,
ResponseFormat : openai . CreateImageResponseFormatB64JSON ,
N : 1 ,
}
respBase64 , err := c . CreateImage ( ctx , reqBase64 )
if err != nil {
fmt . Printf ( "Image creation error: %v n " , err )
return
}
imgBytes , err := base64 . StdEncoding . DecodeString ( respBase64 . Data [ 0 ]. B64JSON )
if err != nil {
fmt . Printf ( "Base64 decode error: %v n " , err )
return
}
r := bytes . NewReader ( imgBytes )
imgData , err := png . Decode ( r )
if err != nil {
fmt . Printf ( "PNG decode error: %v n " , err )
return
}
file , err := os . Create ( "example.png" )
if err != nil {
fmt . Printf ( "File creation error: %v n " , err )
return
}
defer file . Close ()
if err := png . Encode ( file , imgData ); err != nil {
fmt . Printf ( "PNG encode error: %v n " , err )
return
}
fmt . Println ( "The image was saved as example.png" )
}GPT图像1图像生成
package main
import (
"context"
"encoding/base64"
"fmt"
"os"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. ImageRequest {
Prompt : "Parrot on a skateboard performing a trick. Large bold text " SKATE MASTER " banner at the bottom of the image. Cartoon style, natural light, high detail, 1:1 aspect ratio." ,
Background : openai . CreateImageBackgroundOpaque ,
Model : openai . CreateImageModelGptImage1 ,
Size : openai . CreateImageSize1024x1024 ,
N : 1 ,
Quality : openai . CreateImageQualityLow ,
OutputCompression : 100 ,
OutputFormat : openai . CreateImageOutputFormatJPEG ,
// Moderation: openai.CreateImageModerationLow,
// User: "",
}
resp , err := c . CreateImage ( ctx , req )
if err != nil {
fmt . Printf ( "Image creation Image generation with GPT Image 1error: %v n " , err )
return
}
fmt . Println ( "Image Base64:" , resp . Data [ 0 ]. B64JSON )
// Decode the base64 data
imgBytes , err := base64 . StdEncoding . DecodeString ( resp . Data [ 0 ]. B64JSON )
if err != nil {
fmt . Printf ( "Base64 decode error: %v n " , err )
return
}
// Write image to file
outputPath := "generated_image.jpg"
err = os . WriteFile ( outputPath , imgBytes , 0644 )
if err != nil {
fmt . Printf ( "Failed to write image file: %v n " , err )
return
}
fmt . Printf ( "The image was saved as %s n " , outputPath )
}配置代理
config := openai . DefaultConfig ( "token" )
proxyUrl , err := url . Parse ( "http://localhost:{port}" )
if err != nil {
panic ( err )
}
transport := & http. Transport {
Proxy : http . ProxyURL ( proxyUrl ),
}
config . HTTPClient = & http. Client {
Transport : transport ,
}
c := openai . NewClientWithConfig ( config )另请参阅:https://pkg.go.dev/github.com/sashabaranov/go-openai#clientconfig
CHATGPT支持上下文
")
text, _ := reader.ReadString('n')
// convert CRLF to LF
text = strings.Replace(text, "n", "", -1)
messages = append(messages, openai.ChatCompletionMessage{
Role: openai.ChatMessageRoleUser,
Content: text,
})
resp, err := client.CreateChatCompletion(
context.Background(),
openai.ChatCompletionRequest{
Model: openai.GPT3Dot5Turbo,
Messages: messages,
},
)
if err != nil {
fmt.Printf("ChatCompletion error: %vn", err)
continue
}
content := resp.Choices[0].Message.Content
messages = append(messages, openai.ChatCompletionMessage{
Role: openai.ChatMessageRoleAssistant,
Content: content,
})
fmt.Println(content)
}
}">
package main import ( "bufio" "context" "fmt" "os" "strings" "github.com/sashabaranov/go-openai" ) func main () { client := openai . NewClient ( "your token" ) messages := make ([]openai. ChatCompletionMessage , 0 ) reader := bufio . NewReader ( os . Stdin ) fmt . Println ( "Conversation" ) fmt . Println ( "---------------------" ) for { fmt . Print ( "-> " ) text , _ := reader . ReadString ( 'n' ) // convert CRLF to LF text = strings . Replace ( text , " n " , "" , - 1 ) messages = append ( messages , openai. ChatCompletionMessage { Role : openai . ChatMessageRoleUser , Content : text , }) resp , err := client . CreateChatCompletion ( context . Background (), openai. ChatCompletionRequest { Model : openai . GPT3Dot5Turbo , Messages : messages , }, ) if err != nil { fmt . Printf ( "ChatCompletion error: %v n " , err ) continue } content := resp . Choices [ 0 ]. Message . Content messages = append ( messages , openai. ChatCompletionMessage { Role : openai . ChatMessageRoleAssistant , Content : content , }) fmt . Println ( content ) } }
Azure Openai Chatgpt
package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
config := openai . DefaultAzureConfig ( "your Azure OpenAI Key" , "https://*yo**ur Azure OpenAI Endpoint" )
// If you use a deployment name different from the model name, you can customize the AzureModelMapperFunc function
// config.AzureModelMapperFunc = func(model string) string {
// azureModelMapping := map[string]string{
// "gpt-3.5-turbo": "your gpt-3.5-turbo deployment name",
// }
// return azureModelMapping[model]
// }
client := openai . NewClientWithConfig ( config )
resp , err := client . CreateChatCompletion (
context . Background (),
openai. ChatCompletionRequest {
Model : openai . GPT3Dot5Turbo ,
Messages : []openai. ChatCompletionMessage {
{
Role : openai . ChatMessageRoleUser ,
Content : "Hello Azure OpenAI!" ,
},
},
},
)
if err != nil {
fmt . Printf ( "ChatCompletion error: %v n " , err )
return
}
fmt . Println ( resp . Choices [ 0 ]. Message . Content )
}嵌入语义相似性
package main
import (
"context"
"log"
openai "github.com/sashabaranov/go-openai"
)
func main () {
client := openai . NewClient ( "your-token" )
// Create an EmbeddingRequest for the user query
queryReq := openai. EmbeddingRequest {
Input : [] string { "How many chucks would a woodchuck chuck" },
Model : openai . AdaEmbeddingV2 ,
}
// Create an embedding for the user query
queryResponse , err := client . CreateEmbeddings ( context . Background (), queryReq )
if err != nil {
log . Fatal ( "Error creating query embedding:" , err )
}
// Create an EmbeddingRequest for the target text
targetReq := openai. EmbeddingRequest {
Input : [] string { "How many chucks would a woodchuck chuck if the woodchuck could chuck wood" },
Model : openai . AdaEmbeddingV2 ,
}
// Create an embedding for the target text
targetResponse , err := client . CreateEmbeddings ( context . Background (), targetReq )
if err != nil {
log . Fatal ( "Error creating target embedding:" , err )
}
// Now that we have the embeddings for the user query and the target text, we
// can calculate their similarity.
queryEmbedding := queryResponse . Data [ 0 ]
targetEmbedding := targetResponse . Data [ 0 ]
similarity , err := queryEmbedding . DotProduct ( & targetEmbedding )
if err != nil {
log . Fatal ( "Error calculating dot product:" , err )
}
log . Printf ( "The similarity score between the query and the target is %f" , similarity )
}Azure Openai嵌入
package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
config := openai . DefaultAzureConfig ( "your Azure OpenAI Key" , "https://*yo**ur Azure OpenAI Endpoint" )
config . APIVersion = "2023-05-15" // optional update to latest API version
//If you use a deployment name different from the model name, you can customize the AzureModelMapperFunc function
//config.AzureModelMapperFunc = func(model string) string {
// azureModelMapping := map[string]string{
// "gpt-3.5-turbo":"your gpt-3.5-turbo deployment name",
// }
// return azureModelMapping[model]
//}
input := "Text to vectorize"
client := openai . NewClientWithConfig ( config )
resp , err := client . CreateEmbeddings (
context . Background (),
openai. EmbeddingRequest {
Input : [] string { input },
Model : openai . AdaEmbeddingV2 ,
})
if err != nil {
fmt . Printf ( "CreateEmbeddings error: %v n " , err )
return
}
vectors := resp . Data [ 0 ]. Embedding // []float32 with 1536 dimensions
fmt . Println ( vectors [: 10 ], "..." , vectors [ len ( vectors ) - 10 :])
}JSON策略用于调用功能
现在,聊天完成可以选择拨打函数以获取更多信息(请参阅此处的开发人员文档)。
为了描述可以调用的函数的类型,必须提供JSON模式。许多JSON模式库存在,并且比我们在此库中提供的更先进,但是我们为那些想使用此功能而无需格式化自己的JSON模式有效负载的人提供了一个简单的JSonschema软件包。
开发人员文档将此JSON模式定义为一个例子:
{
"name" : " get_current_weather " ,
"description" : " Get the current weather in a given location " ,
"parameters" :{
"type" : " object " ,
"properties" :{
"location" :{
"type" : " string " ,
"description" : " The city and state, e.g. San Francisco, CA "
},
"unit" :{
"type" : " string " ,
"enum" :[
" celsius " ,
" fahrenheit "
]
}
},
"required" :[
" location "
]
}
}使用Jsonschema软件包,可以使用结构这样创建此架构:
FunctionDefinition {
Name : "get_current_weather" ,
Parameters : jsonschema. Definition {
Type : jsonschema . Object ,
Properties : map [ string ]jsonschema. Definition {
"location" : {
Type : jsonschema . String ,
Description : "The city and state, e.g. San Francisco, CA" ,
},
"unit" : {
Type : jsonschema . String ,
Enum : [] string { "celsius" , "fahrenheit" },
},
},
Required : [] string { "location" },
},
}函数定义的参数字段可以接受上述样式,甚至可以从另一个库中嵌套结构(只要可以将其编码为JSON)即可。
错误处理
Open-AI保留有关如何处理API错误的清晰文档
例子:
e := &openai.APIError{}
if errors.As(err, &e) {
switch e.HTTPStatusCode {
case 401:
// invalid auth or key (do not retry)
case 429:
// rate limiting or engine overload (wait and retry)
case 500:
// openai server error (retry)
default:
// unhandled
}
}
微调模型
", "completion": ""}
// {"prompt": "", "completion": ""}
// {"prompt": "", "completion": ""}
// chat models are trained using the following file format:
// {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content&q