mlflow

其他源码 2025-08-04

mlflow :机器学习生命周期平台

mlflow是一个开源平台,是专门建造的,可帮助机器学习从业人员和团队处理机器学习过程的复杂性。 mlflow着重于机器学习项目的完整生命周期,以确保每个阶段都可以管理,可追溯和可重复


mlflow的核心组件是:

  • 实验跟踪:一组对日志模型,参数和结果的API进行ML实验,并使用交互式UI比较它们。
  • 模型包装?:用于包装模型及其元数据的标准格式,例如依赖性版本,可确保可靠的部署和强可重复性。
  • 模型注册表:一个集中的模型存储,一组API和UI,可协作管理mlflow模型的完整生命周期。
  • 服务:无缝模型部署的工具,可在Docker,Kubernetes,Azure ML和AWS SageMaker等平台上进行批量和实时评分。
  • 评估:一套自动化模型评估工具,与实验跟踪无缝集成以记录模型性能,并在视觉上比较多个模型的结果。
  • 可观察性?:与各种Genai库和手动仪器的Python SDK追踪集成,提供更轻松的调试经验并支持在线监控。

安装

要安装mlflow Python软件包,请运行以下命令:

pip install mlflow

另外,您可以在不同的软件包托管平台上安装mlflow :

PYPI
康达·福克
克兰
Maven Central

文档

可以在此处找到有关mlflow的官方文档。

在任何地方运行

您可以在许多不同的环境中运行mlflow ,包括本地开发,亚马逊萨吉式制造商,Azureml和Databricks。请参阅此指南,以了解如何在环境上设置mlflow 。

用法

实验跟踪(DOC)

以下示例使用Scikit-Learn训练一个简单的回归模型,同时启用mlflow的自动化功能用于实验跟踪。

mlflow from sklearn.model_selection import train_test_split from sklearn.datasets import load_diabetes from sklearn.ensemble import RandomForestRegressor # Enable mlflow 's automatic experiment tracking for scikit-learn mlflow .sklearn.autolog() # Load the training dataset db = load_diabetes() X_train, X_test, y_train, y_test = train_test_split(db.data, db.target) rf = RandomForestRegressor(n_estimators=100, max_depth=6, max_features=3) # mlflow triggers logging automatically upon model fitting rf.fit(X_train, y_train)">
 import mlflow

from sklearn . model_selection import train_test_split
from sklearn . datasets import load_diabetes
from sklearn . ensemble import RandomForestRegressor

# Enable mlflow 's automatic experiment tracking for scikit-learn
mlflow . sklearn . autolog ()

# Load the training dataset
db = load_diabetes ()
X_train , X_test , y_train , y_test = train_test_split ( db . data , db . target )

rf = RandomForestRegressor ( n_estimators = 100 , max_depth = 6 , max_features = 3 )
# mlflow triggers logging automatically upon model fitting
rf . fit ( X_train , y_train )

上述代码完成后,在单独的终端中运行以下命令,然后通过打印的URL访问mlflow UI。应该自动创建mlflow运行,该运行跟踪训练数据集,超级参数,性能指标,训练有素的模型,依赖项等。

 mlflow ui

服务模型(DOC)

您可以使用mlflow CLI通过单行命令将记录的模型部署到本地推理服务器。请访问文档以获取如何将模型部署到其他托管平台。

 mlflow models serve --model-uri runs:/ < run-id > /model

评估模型(DOC)

以下示例运行了具有几个内置指标的提问任务的自动评估。

mlflow import pandas as pd # Evaluation set contains (1) input question (2) model outputs (3) ground truth df = pd.DataFrame( { "inputs": ["What is mlflow ?", "What is Spark?"], "outputs": [ " mlflow is an innovative fully self-driving airship powered by AI.", "Sparks is an American pop and rock duo formed in Los Angeles.", ], "ground_truth": [ " mlflow is an open-source platform for managing the end-to-end machine learning (ML) " "lifecycle.", "Apache Spark is an open-source, distributed computing system designed for big data " "processing and analytics.", ], } ) eval_dataset = mlflow .data.from_pandas( df, predictions="outputs", targets="ground_truth" ) # Start an mlflow Run to record the evaluation results to with mlflow .start_run(run_name="evaluate_qa"): # Run automatic evaluation with a set of built-in metrics for question-answering models results = mlflow .evaluate( data=eval_dataset, model_type="question-answering", ) print(results.tables["eval_results_table"])">
 import mlflow
import pandas as pd

# Evaluation set contains (1) input question (2) model outputs (3) ground truth
df = pd . DataFrame (
    {
        "inputs" : [ "What is mlflow ?" , "What is Spark?" ],
        "outputs" : [
            " mlflow is an innovative fully self-driving airship powered by AI." ,
            "Sparks is an American pop and rock duo formed in Los Angeles." ,
        ],
        "ground_truth" : [
            " mlflow is an open-source platform for managing the end-to-end machine learning (ML) "
            "lifecycle." ,
            "Apache Spark is an open-source, distributed computing system designed for big data "
            "processing and analytics." ,
        ],
    }
)
eval_dataset = mlflow . data . from_pandas (
    df , predictions = "outputs" , targets = "ground_truth"
)

# Start an mlflow Run to record the evaluation results to
with mlflow . start_run ( run_name = "evaluate_qa" ):
    # Run automatic evaluation with a set of built-in metrics for question-answering models
    results = mlflow . evaluate (
        data = eval_dataset ,
        model_type = "question-answering" ,
    )

print ( results . tables [ "eval_results_table" ])

可观察性(DOC)

mlflow跟踪为OpenAI,Langchain,Llamaindex,DSPY,Autogen等各种Genai库提供了LLM可观察性。要启用自动追踪,请在运行模型之前致电mlflow .xyz.autolog()。请参阅文档以获取自定义和手动仪器。

mlflow from openai import OpenAI # Enable tracing for OpenAI mlflow .openai.autolog() # Query OpenAI LLM normally response = OpenAI().chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": "Hi!"}], temperature=0.1, )">
 import mlflow
from openai import OpenAI

# Enable tracing for OpenAI
mlflow . openai . autolog ()

# Query OpenAI LLM normally
response = OpenAI (). chat . completions . create (
    model = "gpt-4o-mini" ,
    messages = [{ "role" : "user" , "content" : "Hi!" }],
    temperature = 0.1 ,
)

然后导航到mlflow UI中的“跟踪”选项卡以查找Trace Records OpenAI查询。

社区

  • 有关mlflow使用情况的帮助或疑问(例如“我该怎么做X?”)访问文档或堆栈溢出。
  • 另外,您可以向我们的AI驱动聊天机器人提出问题。访问DOC网站,然后单击右下底部的“询问AI”按钮,以开始与机器人聊天。
  • 要报告错误,提交文档问题或提交功能请求,请打开GitHub问题。
  • 有关发布公告和其他讨论,请订阅我们的邮件列表( mlflow -users@googlegroups.com),或在Slack上加入我们。

贡献

我们很高兴欢迎对mlflow的贡献!我们还在寻求对mlflow路线图上的项目的贡献。请参阅我们的贡献指南,以了解有关为mlflow做出贡献的更多信息。

引用

如果您在研究中使用mlflow ,请使用GitHub存储库页面顶部的“引用此存储库”按钮引用它,该按钮将为您提供包括APA和Bibtex在内的引用格式。

核心成员

mlflow目前由以下核心成员维护,并从数百名极有才华的社区成员捐款。

  • 本·威尔逊
  • 科里·祖玛(Corey Zumar)
  • 丹尼尔·洛
  • 加布里埃尔·富
  • Harutaka Kawamura
  • Serena Ruan
  • Weichen Xu
  • 沃渡Yuki
  • Tomu Hirata
下载源码

通过命令行克隆项目:

git clone https://github.com/mlflow/mlflow.git